Seemous 2017/4

(a) Let n \in \mathbb{N} \cup \{ 0 \}. Evaluate the integral:

    \[\mathcal{J} = \int_0^1 \left( 1 - t \right)^n e^t \, {\rm d}t\]

(b) Let k \in \mathbb{N} \cup \{ 0 \} and let \{x_n\}_{n \geq k} be a sequence defined as

    \[x_n = \sum_{i=k}^n \binom{i}{k} \left(e - 1 - \frac{1}{1!} - \frac{1}{2!} - \cdots -\frac{1}{i!} \right)\]

Find the limit of x_n.

Solution

Read more

 

Leave a Reply