Limit of a sum

Let a_n be a real sequence such that a_n>0 , \liminf a_n=1 , \limsup a_n =2 and \lim \limits_{n \rightarrow +\infty} \sqrt[n] {\prod \limits_{k=1}^n{a_k}}=1. Prove that

    \[\lim_{n \rightarrow +\infty} \frac{1}{n} \sum_{k=1}^{n} a_k =1\]

Solution

Read more

Leave a Reply