Curves and line integrals

Let \gamma be defined as

\gamma(t) = e^{-t} (\cos t, \sin t )\quad , \; t \geq 0

(i) Sketch the graph of \gamma.

(ii) Evaluate the line integrals:

\begin{matrix} & \displaystyle ({\rm i})\; \oint \limits_{\gamma}\left ( x^2 +y^2 \right )\, {\rm d}s & & ({\rm ii}) \displaystyle \oint \limits_{\gamma} (-y, x)\cdot {\rm d}(x, y) \end{matrix}

Solution

Read more

Leave a Reply