An arccotangent integral

Let \zeta denote the Riemann zeta function. Prove that

    \[\int_0^\infty \left ( \arccot x \right )^3\; \mathrm{d}x = \frac{3 \pi^2 \ln 2}{4} - \frac{21\zeta(3)}{8}\]

Solution

Read more

2 thoughts on “An arccotangent integral”

  1. Let’s expand on some things here.

    1. Let \mathcal{H}_n denote the n-th harmonic number. It holds that:

        \[\frac{x \arctan x}{x^2+1} = \sum_{n=1}^{\infty} (-1)^{n-1} \left ( \mathcal{H}_{2n}  - \frac{\mathcal{H}_n}{2} \right ) x^{2n}\]

    ( the proof is left to the reader )

    2. Following (1) it is easy to see that:

        \[\int_{0}^{1} \frac{\ln x \arctan x}{1+x^2} \, \mathrm{d}x = \frac{1}{4} \sum_{n=1}^{\infty} (-1)^n \cdot \frac{\mathcal{H}_{2n} -\frac{\mathcal{H}_n}{2}}{n^2}\]

    The second series is an old chestnut.

    3. It holds that:

        \[\sum_{n=1}^{\infty} (-1)^n \frac{\mathcal{H}_n}{n^2} = -\frac{5 \zeta(3)}{8}\]

    Proof: Successively we have that:

        \begin{align*} \sum_{n=1}^\infty\frac{\mathcal{H}_n}{n^2} &=\sum_{n=1}^\infty\sum_{k=1}^\infty\frac1{n^2}\left(\frac1k-\frac1{k+n}\right)\\ &=\sum_{n=1}^\infty\sum_{k=1}^\infty\frac1{nk(k+n)} \\ &=\sum_{k=1}^\infty\sum_{n=k+1}^\infty\frac1{nk(n-k)}\\ &=\sum_{n=2}^\infty\sum_{k=1}^{n-1}\frac1{nk(n-k)}\\ &=\sum_{n=2}^\infty\sum_{k=1}^{n-1}\frac1{n^2}\left(\frac1k+\frac1{n-k}\right)\\ &=2\sum_{n=1}^\infty\frac{\mathcal{H}_{n-1}}{n^2}\\ &=2\sum_{n=1}^\infty\frac{\mathcal{H}_n}{n^2}-2\zeta(3) \\ \sum_{n=1}^\infty\frac{\mathcal{H}_n}{n^2} &=2\zeta(3)  \end{align*}

    and similarly,

        \begin{align*} \sum_{n=1}^\infty\frac{(-1)^n \mathcal{H}_n}{n^2} &=\sum_{n=1}^\infty\sum_{k=1}^\infty\frac{(-1)^n}{n^2}\left(\frac1k-\frac1{k+n}\right)\\ &=\sum_{n=1}^\infty\sum_{k=1}^\infty\frac{(-1)^n}{nk(k+n)} \\ \sum_{n=1}^\infty\frac{(-1)^n \mathcal{H}_n}{n^2}&=-\frac34\zeta(3)+\sum_{n=1}^\infty\frac{(-1)^n \mathcal{H}_{n-1}}{n^2}\\ &=-\frac34\zeta(3)+\frac12\sum_{n=1}^\infty\sum_{k=1}^{n-1}\frac{(-1)^n}{n^2}\left(\frac1k+\frac1{n-k}\right)\\ &=-\frac34\zeta(3)+\frac12\sum_{k=1}^\infty\sum_{n=k+1}^\infty\frac{(-1)^n}{nk(n-k)}\\ &=-\frac34\zeta(3)+\frac12\sum_{k=1}^\infty\sum_{n=1}^\infty\frac{(-1)^{n+k}}{(n+k)kn}  \end{align*}

    Hence,

        \begin{align*} \zeta(3) &= \frac{1}{2} \sum_{k=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{nk(n+k)}\\   &= \sum_{k=1}^{\infty} \sum_{n=1}^{\infty} \frac{1+(-1)^k + (-1)^n + (-1)^{n+k}}{nk(n+k)}\\   &= 2\zeta(3) + \sum_{n=1}^{\infty} \frac{(-1)^n \mathcal{H}_n}{n^2} + 2 \sum_{n=1}^{\infty}\frac{(-1)^n \mathcal{H}_n}{n^2} +  \frac{3\zeta(3)}{2}\\    \\   \sum_{n=1}^{\infty} (-1)^n \frac{\mathcal{H}_n}{n^2}&=  - \frac{5 \zeta(3)}{8} \end{align*}

    since 1+(-1)^k+(-1)^n+(-1)^{n+k}=4 if-f both k and n are even and 0 otherwise.

    4. On the other hand we can get the generating function of the previous series. It is known that

        \begin{align*} \sum_{n=1}^{\infty} \mathcal{H}_n^{(q)} x^n = \frac{\mathrm{Li}_q(x)}{1-x} &\overset{q=1}{\implies} \sum_{n=1}^{\infty} \mathcal{H}_n x^n = -\frac{\ln (1-x)}{1-x} \\ &\Rightarrow \sum_{n=1}^{\infty} \frac{\mathcal{H}_n}{n} x^n = \mathrm{Li}_2(x) + \frac{\log^2 \left ( 1-x \right )}{2}   \end{align*}

    Integrating once more we get the generating function!

Leave a Reply