A Riemann sum III

  1. Using Riemann sums evaluate the limit

        \[\ell = \lim_{n \rightarrow +\infty} \left ( \frac{1}{n} \ln n! - \ln n \right )\]

  2. Using the above result prove that

        \[\lim_{n \rightarrow +\infty} \left ( \frac{n! e^n}{n^{n+1/2}\sqrt{2\pi}} \right )^{1/n} =1\]

Solution

Read more

Leave a Reply