“Upper” bound

Let f:\mathbb{R}^+ \rightarrow \mathbb{R} be a function satisfying

    \[\left | f\left ( a + b \right ) - f(a)\right | \leq \frac{b}{a}\]

for all positive real numbers a and b. Prove that

    \[\left | f(1) - f(x) \right | \leq \left |\ln x \right | \quad \text{for all} \;\; x>0\]

Solution

Read more

Leave a Reply